Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1275845, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915582

RESUMO

Rationale: COPD is characterized by chronic airway inflammation, small airways changes, with disappearance and obstruction, and also distal/alveolar destruction (emphysema). The chronology by which these three features evolve with altered mucosal immunity remains elusive. This study assessed the mucosal immune defense in human control and end-stage COPD lungs, by detailed microCT and RNA transcriptomic analysis of diversely affected zones. Methods: In 11 control (non-used donors) and 11 COPD (end-stage) explant frozen lungs, 4 cylinders/cores were processed per lung for microCT and tissue transcriptomics. MicroCT was used to quantify tissue percentage and alveolar surface density to classify the COPD cores in mild, moderate and severe alveolar destruction groups, as well as to quantify terminal bronchioles in each group. Transcriptomics of each core assessed fold changes in innate and adaptive cells and pathway enrichment score between control and COPD cores. Immunostainings of immune cells were performed for validation. Results: In mildly affected zones, decreased defensins and increased mucus production were observed, along CD8+ T cell accumulation and activation of the IgA pathway. In more severely affected zones, CD68+ myeloid antigen-presenting cells, CD4+ T cells and B cells, as well as MHCII and IgA pathway genes were upregulated. In contrast, terminal bronchioles were decreased in all COPD cores. Conclusion: Spatial investigation of end-stage COPD lungs show that mucosal defense dysregulation with decreased defensins and increased mucus and IgA responses, start concomitantly with CD8+ T-cell accumulation in mild emphysema zones, where terminal bronchioles are already decreased. In contrast, adaptive Th and B cell activation is observed in areas with more advanced tissue destruction. This study suggests that in COPD innate immune alterations occur early in the tissue destruction process, which affects both the alveoli and the terminal bronchioles, before the onset of an adaptive immune response.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Inflamação , Defensinas , Imunoglobulina A
2.
Cell Oncol (Dordr) ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971644

RESUMO

PURPOSE: TIPRL1 (target of rapamycin signaling pathway regulator-like 1) is a known interactor and inhibitor of protein phosphatases PP2A, PP4 and PP6 - all pleiotropic modulators of the DNA Damage Response (DDR). Here, we investigated the role of TIPRL1 in the radiotherapy (RT) response of Head and Neck Squamous Cell Carcinoma (HNSCC). METHODS: TIPRL1 mRNA (cBioportal) and protein expression (immunohistochemistry) in HNSCC samples were linked with clinical patient data. TIPRL1-depleted HNSCC cells were generated by CRISPR/Cas9 editing, and effects on colony growth, micronuclei formation (microscopy), cell cycle (flow cytometry), DDR signaling (immunoblots) and proteome (mass spectrometry) following RT were assessed. Mass spectrometry was used for TIPRL1 phosphorylation and interactomics analysis in irradiated cells. RESULTS: TIPRL1 expression was increased in tumor versus non-tumor tissue, with high tumoral TIPRL1 expression associating with lower locoregional control and decreased survival of RT-treated patients. TIPRL1 deletion in HNSCC cells resulted in increased RT sensitivity, a faster but prolonged cell cycle arrest, increased micronuclei formation and an altered proteome-wide DDR. Upon irradiation, ATM phosphorylates TIPRL1 at Ser265. A non-phospho Ser265Ala mutant could not rescue the increased radiosensitivity phenotype of TIPRL1-depleted cells. While binding to PP2A-like phosphatases was confirmed, DNA-dependent protein kinase (DNA-PKcs), RAD51 recombinase and nucleosomal histones were identified as novel TIPRL1 interactors. Histone binding, although stimulated by RT, was adversely affected by TIPRL1 Ser265 phosphorylation. CONCLUSIONS: Our findings underscore a clinically relevant role for TIPRL1 and its ATM-dependent phosphorylation in RT resistance through modulation of the DDR, highlighting its potential as a new HNSCC predictive marker and therapeutic target.

3.
Cancers (Basel) ; 15(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627221

RESUMO

Primary liver cancer (PLC) can be classified in hepatocellular (HCC), cholangiocarcinoma (CCA), and combined hepatocellular-cholangiocarcinoma (cHCC-CCA). The molecular mechanisms involved in PLC development and phenotype decision are still not well understood. Complete deletion of Ppp2r5d, encoding the B56δ subunit of Protein Phosphatase 2A (PP2A), results in spontaneous HCC development in mice via a c-MYC-dependent mechanism. In the present study, we aimed to examine the role of Ppp2r5d in an independent mouse model of diethylnitrosamine (DEN)-induced hepatocarcinogenesis. Ppp2r5d deletion (heterozygous and homozygous) accelerated HCC development, corroborating its tumor-suppressive function in liver and suggesting Ppp2r5d may be haploinsufficient. Ppp2r5d-deficient HCCs stained positively for c-MYC, consistent with increased AKT activation in pre-malignant and tumor tissues of Ppp2r5d-deficient mice. We also found increased YAP activation in Ppp2r5d-deficient tumors. Remarkably, in older mice, Ppp2r5d deletion resulted in cHCC-CCA development in this model, with the CCA component showing increased expression of progenitor markers (SOX9 and EpCAM). Finally, we observed an upregulation of Ppp2r5d in tumors from wildtype and heterozygous mice, revealing a tumor-specific control mechanism of Ppp2r5d expression, and suggestive of the involvement of Ppp2r5d in a negative feedback regulation restricting tumor growth. Our study highlights the tumor-suppressive role of mouse PP2A-B56δ in both HCC and cHCC-CCA, which may have important implications for human PLC development and targeted treatment.

4.
Cells ; 10(12)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34943945

RESUMO

Chronic lung diseases (CLDs) represent a set of disorders characterized by the progressive loss of proper lung function. Among severe CLDs, the incidence of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) has grown over the last decades, mainly in the elderly population. Several studies have highlighted an increased expression of senescence-related markers in the resident progenitor cells in COPD and IPF, possibly undermining epithelial integrity and contributing to the progression and the aggravation of both diseases. Recently, the chronic activation of the canonical Wnt/ß-catenin pathway was shown to induce cellular senescence. Here, we investigated the localization and the expression of leucin-rich repeat-containing G-protein-coupled receptor 6 (LGR6), a protein that activates and potentiates the canonical Wnt signalling. Through immunohistochemical analyses, we identified a lesion-associated rise in LGR6 levels in abnormal lung epithelial progenitors in COPD and IPF when compared to histologically normal tissues. Moreover, in areas of aberrant regeneration, chronic damage and fibrosis, LGR6-expressing epithelial progenitors displayed a major increase in the expression of senescence-associated markers. Our study suggests the involvement of LGR6 in the chronic activation of the Wnt/ß-catenin pathway, mediating the impairment and exhaustion of epithelial progenitors in COPD and IPF.


Assuntos
Senescência Celular/genética , Fibrose Pulmonar Idiopática/genética , Doença Pulmonar Obstrutiva Crônica/genética , Receptores Acoplados a Proteínas G/genética , Adulto , Idoso , Linhagem Celular , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/patologia , Células-Tronco/metabolismo , Proteínas Wnt/genética , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...